Assessment
Questionnaire

Have a symptom?
See what questions
a doctor would ask.
 

Treatments for Tuberculosis

Treatments for Tuberculosis:

Treatment of tuberculosis starts with prevention. In countries where tuberculosis is common, vaccination with the BCG vaccine is often recommended. The BCG vaccine is not commonly used in the U.S. Preventing the spread of tuberculosis and other contagious diseases also includes covering the mouth and nose with an elbow or a tissue when sneezing or coughing.

Treatment of latent tuberculosis includes the medication isoniazid (INH). This medication needs to be taken for at least nine months to kill all of the latent Mycobacterium tuberculosis bacteria in the body.

Treatment of active tuberculosis includes a combination of several drugs, including antibacterial and antibiotic medications. Medication treatment can last a long time, as long as six to 12 months, and needs to be taken exactly as directed to be effective in curing tuberculosis.

Treatment of tuberculosis also includes ensuring good nutrition and extra rest.

Treatment List for Tuberculosis

The list of treatments mentioned in various sources for Tuberculosis includes the following list. Always seek professional medical advice about any treatment or change in treatment plans.

Alternative Treatments for Tuberculosis

Alternative treatments or home remedies that have been listed as possibly helpful for Tuberculosis may include:

  • Drosera homeopathic prevention
  • Bacillinum homeopathic prevention and treatment
  • Arsenicum homeopathic remedy
  • more treatments »

Tuberculosis: Is the Diagnosis Correct?

The first step in getting correct treatment is to get a correct diagnosis. Differential diagnosis list for Tuberculosis may include:

Hidden causes of Tuberculosis may be incorrectly diagnosed:

Tuberculosis: Marketplace Products, Discounts & Offers

Products, offers and promotion categories available for Tuberculosis:

Curable Types of Tuberculosis

Possibly curable types of Tuberculosis may include:

Tuberculosis: Research Doctors & Specialists

Research all specialists including ratings, affiliations, and sanctions.

Drugs and Medications used to treat Tuberculosis:

Note:You must always seek professional medical advice about any prescription drug, OTC drug, medication, treatment or change in treatment plans.

Some of the different medications used in the treatment of Tuberculosis include:

  • Prednisolone
  • A&D w/Prednisolone
  • Cortalone
  • Delta-Cortef
  • Duapred
  • Fernisonone-P
  • Hydelta-TBA
  • Hydeltrasol
  • Inflamase
  • Inflamase Forte
  • Key-Pred
  • Meticortelone
  • Meti-Derm
  • Metreton
  • Minims Prednisolone
  • Mydrapred
  • Niscort
  • Nor-Pred
  • Nova-Pred
  • Novoprednisolone
  • Optimyd
  • Otobione
  • Peidaject
  • Pediapred
  • Polypred
  • Predcor
  • Pred Forte
  • Pred-G
  • Pred Mild
  • Prelone
  • PSP-IV
  • Savacort
  • Sterane
  • TBA Pred
  • Pyrazinamide - used as part of a combination therapy
  • PMS Pyrazinamide
  • Rifater
  • Tebrazid - used as part of a combination therapy
  • Rifampin
  • Rifadin
  • Rifadin IV
  • Rifamate
  • Rimactane
  • Rimactane/INH Dual Pack
  • Rofact
  • Aminosalicylate Sodium - used as part of a combination treatment
  • Nemasol Sodium - used as part of a combination treatment
  • Capreomycin - used as part of a combination treatment
  • Capastat Sulfate - used as part of a combination treatment
  • Ethionamide
  • Trecator
  • Braccoprial - used as part of a combination therapy
  • Methambutol
  • Myambutol
  • Zinamide

Unlabeled Drugs and Medications to treat Tuberculosis:

Unlabelled alternative drug treatments for Tuberculosis include:

  • Chlorpromazine - used as part of a combination therapy
  • Chlorpromanyl - used as part of a combination therapy
  • Largactil - used as part of a combination therapy
  • Novochlorpromazine - used as part of a combination therapy
  • Ormazine - used as part of a combination therapy
  • Thora-Dex - used as part of a combination therapy
  • Thorazine - used as part of a combination therapy
  • Thorazine SR - used as part of a combination therapy

Hospital statistics for Tuberculosis:

These medical statistics relate to hospitals, hospitalization and Tuberculosis:

  • 0.04% (5,666) of hospital episodes were for tuberculosis in England 2002-03 (Hospital Episode Statistics, Department of Health, England, 2002-03)
  • 0.12% (63,347) of hospital bed days were for tuberculosis in England 2002-03 (Hospital Episode Statistics, Department of Health, England, 2002-03)
  • 18.1 days was the mean length of stay in hospitals for tuberculosis in England 2002-03 (Hospital Episode Statistics, Department of Health, England, 2002-03)
  • 10 days was the median length of stay in hospitals for tuberculosis in England 2002-03 (Hospital Episode Statistics, Department of Health, England, 2002-03)
  • more hospital information...»

Hospitals & Medical Clinics: Tuberculosis

Research quality ratings and patient incidents/safety measures for hospitals and medical facilities in specialties related to Tuberculosis:

Hospital & Clinic quality ratings »

Choosing the Best Treatment Hospital: More general information, not necessarily in relation to Tuberculosis, on hospital and medical facility performance and surgical care quality:

Medical news summaries about treatments for Tuberculosis:

The following medical news items are relevant to treatment of Tuberculosis:

Discussion of treatments for Tuberculosis:

Antimicrobial Resistance, NIAID Fact Sheet: NIAID (Excerpt)

Strains of multidrug-resistant tuberculosis (MDR-TB) have emerged over the last decade and pose a particular threat to people infected with HIV. Drug-resistant strains are as contagious as those that are susceptible to drugs. MDR-TB is more difficult and vastly more expensive to treat, and patients may remain infectious longer due to inadequate treatment. (Source: excerpt from Antimicrobial Resistance, NIAID Fact Sheet: NIAID)

Tuberculosis, NIAID Fact Sheet: NIAID (Excerpt)

With appropriate antibiotic therapy, TB usually can be cured. In recent years, however, drug-resistant cases of TB have increased dramatically.

Drug resistance results when patients fail to take their medicine consistently for the six to 12 months necessary to destroy all vestiges of M. tuberculosis. In some U.S. cities, more than 50 percent of patients often homeless people, drug addicts, and others caught in poverty fail to complete their prescribed course of TB therapy. One reason for this lack of compliance is that TB patients may feel better after only two to four weeks of treatment and stop taking their TB drugs, some of which can have unpleasant side effects.

Resistance also may develop when patients are treated with too few drugs or with inadequate doses.

Particularly alarming is the increase in the number of people with multidrug-resistant TB (MDR-TB), caused by M. tuberculosis strains resistant to two or more drugs. Even with treatment, the death rate for MDR-TB patients is 40 to 60 percent, the same as for TB patients who receive no treatment. For people coinfected with HIV and MDR-TB, the death rate may be as high as 80 percent. The time from diagnosis to death for some patients with MDR-TB and HIV may be only months as they are sometimes left with no treatment options.

From 1993 to 1997, 43 states and the District of Columbia reported cases of multidrug-resistant TB. In addition, CDC received numerous reports of outbreaks of MDR-TB in hospitals and prisons. During these outbreaks, MDR-TB has sometimes spread to hospital patients, health care workers, prisoners, and prison guards.

What Caused TB's Resurgence?

During the 19th century, TB claimed more lives in the United States than any other disease. Improvements in nutrition, housing, sanitation, and medical care in the first half of the 20th century dramatically reduced the number of cases and deaths. TB's decline hastened in the 1940s and 1950s with the introduction of the first effective antibiotic therapies for TB. By 1985, the number of cases had fallen to 22,201 in the United States.

In 1985, however, the decline ended and the number of active TB cases in the United States began to rise again. Several forces, often interrelated, were behind TB's resurgence:

  • The HIV/AIDS epidemic. People with HIV are particularly vulnerable to reactivation of latent TB infections, as well as to disease caused by new TB infections. TB transmission occurs most frequently in crowded environments such as hospitals, prisons, and shelters where HIV-infected individuals make up a growing proportion of the population.
  • Increased numbers of immigrants from countries with many cases of TB, many of whom live in crowded housing. Because of language and economic difficulties, many immigrants have limited access to health care and may not receive treatment. TB cases among immigrants increased from 4,925 in 1986 to 7,640 in 1998, accounting for 42 percent of the national total.
  • Increased poverty, injection drug use, and homelessness. TB transmission is rampant in crowded shelters and prisons where people weakened by poor nutrition, drug addiction, and alcoholism are exposed to M. tuberculosis. People in poor health, especially those infected with HIV, also are prone to reactivation of latent TB infections.
  • Poor compliance with treatment regimens, especially among disadvantaged groups. Some of these people may remain contagious while others develop and pass on resistant strains of M. tuberculosis that are difficult to treat.
  • Increased numbers of residents in long-term care facilities such as nursing homes. Immune function declines with age, and as patients live longer, many suffer recurrences of latent infections often acquired in early adulthood. Other elderly people, especially those with weak immune systems, become newly infected with TB.

The TB Organism

TB is caused by repeated exposure to airborne droplets contaminated with M. tuberculosis, a rod-shaped bacterium. The TB bacterium also is known as the tubercle bacillus. (A small fraction of cases are caused by related bacteria, M. africanum and M. bovis.)

M. tuberculosis, like other mycobacteria, has an unusual cell wall, a waxy coat comprised of fatty molecules whose structure and function are not well known. This cell wall appears to allow M. tuberculosis to survive in its preferred environment: inside immune cells called macrophages, which ordinarily degrade pathogens with enzymes. The coat of M. tuberculosis also renders it impermeable to many common drugs.

Biologists call M. tuberculosis and other mycobacteria "acid fast" bacteria because their fatty cell walls prevent the cells from being decolorized by acid solutions after staining during diagnostic tests.

Several factors make M. tuberculosis a difficult organism to study in the laboratory, hampering TB research. The bacteria multiply very slowly, only once every 24 hours, and take a month to form a colony. By comparison, other bacteria such as E. coli form colonies within eight hours. TB bacilli tend to form clumps, which makes working with them and counting them difficult. Most daunting, M. tuberculosis, a dangerous, airborne organism, can be studied only in laboratories that have specialized safety equipment.

Transmission

TB is primarily an airborne disease. The disease is not likely to be transmitted through personal items belonging to those with TB, such as clothing, bedding, or other items they have touched. Adequate ventilation is the most important measure to prevent the transmission of TB.

Because most infected people expel relatively few bacilli, transmission of TB usually occurs only after prolonged exposure to someone with active TB. On average, people have a 50 percent chance of becoming infected with TB if they spend eight hours a day for six months or 24 hours a day for two months working or living with someone with active TB, researchers have estimated.

People are most likely to be contagious when their sputum contains bacilli, when they cough frequently and when the extent of their lung disease, as revealed by a chest x-ray, is great. TB is spread from person to person in microscopic droplets droplet nuclei expelled from the lungs when a TB sufferer coughs, sneezes, speaks, sings, or laughs. Only people with active disease are contagious.

Droplet nuclei are tiny and may remain in the air for prolonged periods, ready to be inhaled. They are small enough to bypass the natural defenses of upper respiratory passages, such as hairs in the nose or the hairlike cilia in the bronchial tubes. Infection begins when the bacilli reach the tiny air sacs of the lungs known as alveoli, where they multiply within macrophages.

People who have been treated with appropriate drugs for at least two weeks usually are not infectious.

Infection

The site of initial infection is usually the alveoli the balloonlike sacs at the ends of the small air passages in the lungs known as bronchioles. In the alveoli, white blood cells called macrophages ingest the inhaled M. tuberculosis bacilli.

Some of the bacilli may be killed immediately; others may multiply within the macrophages. Infrequently, but especially in HIV-infected people and in children, the bacilli spread to other sites in the body. This dissemination sometimes results in life-threatening meningitis and other problems.

During the two to eight weeks after initial infection in people with intact immune systems, macrophages present pieces of the bacilli, displayed on their cell surfaces, to another type of white blood cell the T cell. When stimulated, T cells release an elaborate array of chemical signals. Once this response, called cell-mediated hypersensitivity, is established, a person's T cells usually will respond to the tuberculin skin test (PPD test) and produce a characteristic red welt.

Some of the T-cell signals produce inflammatory reactions; other signals recruit and activate specialized cells to kill bacilli and wall-off infected macrophages in tiny, hard grayish nodules known as tubercles.

From then on the body's immune system maintains a standoff with the infection, sometimes for years. In the tubercles, TB bacilli may persist within macrophages, but further multiplication and spread of M. tuberculosis are confined. Most people undergo complete healing of their initial infection, and the tubercles calcify and lose their viability. A positive TB skin test, and in some cases a chest x-ray, may provide the only evidence of the infection.

If, however, the body's resistance is low because of aging, infections such as HIV, malnutrition, or other factors, the bacilli may break out of the tubercles in the alveoli and cause active disease.

Active Disease

On the average, people infected with M. tuberculosis have a 10 percent chance of developing active TB at some time in their lives. The risk of developing active disease is greatest in the first year after infection, but active disease often does not occur until many years later.

Active TB usually results from the spread of bacilli from the alveoli through the bloodstream or lymphatic system to other sites, usually elsewhere in the lungs or local lymph nodes. In 15 percent of cases, the bacilli cause disease in other regions, such as the skin, kidneys, bones, or reproductive and urinary systems.

At the new sites, the body's immune defenses kill many bacilli, but immune cells and local tissue die as well. The dead cells and tissue, along with live immune cells, form granulomas whose centers have the consistency of soft cheese, where the bacilli survive but do not flourish. The early symptoms of active TB can include weight loss, fever, night sweats, and loss of appetite, or they may be vague and go unnoticed by the affected individual.

As more lung tissue is destroyed and the granulomas expand, cavities in the lungs develop, and sometimes break into larger airways called bronchi. This allows large numbers of bacilli to spread when patients cough. As the disease progresses, the granulomas may liquefy, perhaps as a result of enzymes secreted by the body's own immune cells. This creates a rich medium in which the bacilli multiply rapidly and spread, creating further lesions and the characteristic chest pain, cough, and, when a blood vessel is eroded, bloody sputum.

Most patients do not suffer shortness of breath until the lungs are extensively damaged by the formation of cavities. Symptoms of TB involving areas other than the lungs vary, depending upon the organ affected.

Diagnosing TB

The tuberculin skin test, also known as the Mantoux test, can identify most people infected with tubercle bacilli six to eight weeks after initial exposure. A substance called purified protein derivative (PPD) is injected under the skin of the forearm and examined 48 to 72 hours later. If a red welt forms around the injection site, the person may have been infected with M. tuberculosis, but doesn't necessarily have active disease. Most people with previous exposure to TB will test positive on the tuberculin test, as will some people exposed to related mycobacteria. An important exception is people with severely weakened immune systems, such as those with HIV.

If a person has a significant reaction to the tuberculin skin test, additional methods can determine if the individual has active TB. This is sometimes difficult because TB can mimic other diseases, such as pneumonia, lung abscesses, tumors, and fungal infections, or occur along with them. In making a diagnosis, doctors rely on symptoms and other physical signs, a person's history of exposure to TB, and x-rays that may show evidence of TB infection, usually in the form of cavities or lesions in the lungs.

The physician also will take sputum and other samples, because a positive bacteriologic culture of M. tuberculosis is essential to confirm the diagnosis and determine which drugs will work against the strain of TB the patient carries. Because M. tuberculosis grows very slowly, the laboratory diagnosis requires approximately four weeks. An additional two to three weeks usually are needed to determine the drug susceptibility of the organism, making treatment decisions difficult.

Advances in Diagnosis

Recently, researchers supported by the National Institute of Allergy and Infectious Diseases (NIAID) as well as other investigators developed tests that use nucleic acid amplification to speed the diagnosis of TB from four weeks to two days. Another test in development uses luminescent chemicals from the firefly to determine, in 24 to 48 hours, which drugs can kill the TB strain a patient carries.

Treatment of Active Disease

The death rate for untreated TB patients is between 40 and 60 percent. With appropriate antibiotics, however, people with drug-susceptible cases of TB can be cured more than 90 percent of the time.

Successful management of TB depends on close cooperation between the patient and physicians and other health care workers. Patient education is essential, and many doctors opt for supervised, directly observed therapy (DOT). Treatment usually combines the drugs isoniazid (INH) and rifampin, which are given for at least six months, and pyrazinamide and ethambutol (or streptomycin), which are used only in the first two months of treatment. This treatment is referred to as short-course chemotherapy.

Therapy for MDR-TB

Treatment for MDR-TB often requires the use of a second line of TB drugs, all of which can produce serious side effects. Therapy for 18 months to two years may be necessary, and patients should receive at least three drugs to which the bacteria are susceptible.

Prevention

TB is largely a preventable disease. In the United States, prevention has focused on identifying infected individuals early especially those who run the highest risk of developing active disease and treating them with drugs in a program of directly observed therapy.

INH prevents the disease in most people in close contact with infected people or who are infected with the tubercle bacilli but who do not have active TB. The drug is given daily for six to 12 months and strict patient compliance in taking medication is essential to prevent drug-resistant strains from emerging. Adverse reactions to INH are rare, although a small percentage of patients, especially those older than 35, suffer INH-related hepatitis. Rifampin for one year is recommended for close contacts of patients with INH-resistant TB organisms.

In the United States, people with any of the following risk factors should be considered for preventive therapy, regardless of age, if they have not been previously treated for TB:

  • Close contacts of people with newly diagnosed infectious TB; (In addition, children and adolescents who react negatively to the PPD test, but who have been in close contact with infectious people within the past three months, should be considered for preventive therapy. Therapy should continue until a second skin test is done 12 weeks after their first contact with an infectious person.)
  • People with positive tuberculin skin tests and abnormal chest x-rays compatible with inactive TB (lesions caused by prior disease);
  • People whose skin test results have recently converted from negative to positive;
  • People with positive skin test reactions who also have special medical conditions known to increase the risk of TB (e.g., HIV infection, diabetes mellitus) or who are on corticosteroid therapy;
  • HIV-positive people or those suspected to be HIV-infected who now have, or had at any time in the past, positive skin test reactions, but who do not have active infection; and
  • Injection drug users who have positive skin test reactions.

In addition, people younger than 35 in the following groups should be considered for preventive therapy if they have positive skin test reactions:

  • Foreign-born people from countries where TB is common;
  • People in medically underserved, low-income groups, especially African Americans, Hispanics, and Native Americans; and
  • Residents of long-term care facilities such as prisons, nursing homes, and mental institutions.

Health care workers in frequent contact with TB patients or involved with high-risk procedures such as those that induce coughing should have a skin test every six months.

Hospitals and clinics caring for high-risk populations can take precautions to prevent the spread of TB. All patients should be taught to cover their mouths and noses when coughing or sneezing. Ultraviolet light can be used to sterilize the air, and negative pressure rooms and special filters are available, as are special respirators and masks, that filter out the droplet nuclei. Until they are no longer infectious, hospitalized TB patients should be isolated in rooms with controlled ventilation and air flow.

More Effective Vaccines are Needed

In those parts of the world where the disease is common, a vaccine composed of live, attenuated (weakened) mycobacteria from cows (M. bovis, called bacillus Calmette-Guerin [BCG]) is given to infants as part of the immunization program recommended by the World Health Organization (WHO). In infants, BCG prevents the spread of M. tuberculosis within the body, but does not prevent initial infection.

In adults, the effectiveness of BCG has varied widely in large-scale studies. In addition, positive skin test reactions occur in people who have received BCG vaccine, thus limiting the effectiveness of the PPD skin test to identify new infections. As a result, BCG is not recommended for general use in the United States. Because of BCG's limitations, more effective vaccines are needed.

TB and HIV Infection

WHO estimates that 4.4 million people worldwide are coinfected with TB and HIV. By the year 2000, TB will claim 1 million lives annually among the HIV-infected, WHO projects, making TB the leading cause of death in HIV-infected individuals. In the United States, an estimated 100,000 HIV-infected people also carry M. tuberculosis, according to CDC.

TB frequently occurs early in the course of HIV infection, often months to years before other opportunistic infections such as Pneumocystis carinii pneumonia. TB may be the first indication that a person is HIV-infected, and often occurs in areas outside the lungs, particularly in the later stages of HIV disease.

In the United States, people coinfected with TB and HIV develop active TB at a rate of about 8 percent each year. By comparison, otherwise healthy individuals infected with M. tuberculosis have a 10 percent lifetime risk of developing active TB. People with HIV also are at greater risk of having a new infection progress directly to active disease.

MDR-TB in people coinfected with HIV appears to have a more rapid and deadly disease course than seen in patients with MDR-TB who are otherwise healthy.

Diagnosing TB in HIV-infected people is often difficult. These patients frequently have conditions that produce symptoms similar to those of TB, and may not react to the standard tuberculin skin test because their immune systems are suppressed. Although investigators have hypothesized that a two-stage TB skin test might be more reliable than a single-stage test in HIV-infected individuals, a recently completed NIAID study found this not to be the case.

X-rays, sputum smears, and physical exams may also fail to provide an indication of TB infection in HIV-infected individuals. As a consequence, doctors must often decide to begin anti-TB therapy in HIV-infected people suspected of having active TB while waiting for the results of cultures of sputum or other specimens.

NIAID Research Agenda for Tuberculosis

NIAID, the lead institute for TB research at the National Institutes of Health, supports more than 100 research projects related to TB. In fiscal year 1999, NIAID will devote an estimated $40 million to TB research.

NIAID has a comprehensive TB research agenda that supports the following:

  • Studies of the epidemiology and natural history of TB.
  • Basic research into the biology of TB and the host immune response to M. tuberculosis.
  • The development of new tools to diagnose TB.
  • The development of new drugs or new ways to deliver standard drugs.
  • Clinical trials of anti-TB therapies.
  • The development of new vaccines to prevent TB.
  • Training to increase the number of TB researchers.
  • New ways to educate health care workers and the public about TB prevention.

This multi-disciplinary program draws on the Institute's expertise in immunology and microbiology, as well as its capabilities in drug and vaccine development honed as part of the research effort in AIDS and other infectious diseases.

(Source: excerpt from Tuberculosis, NIAID Fact Sheet: NIAID)

Tuberculosis, NIAID Fact Sheet: NIAID (Excerpt)

The death rate for untreated TB patients is between 40 and 60 percent. With appropriate antibiotics, however, people with drug-susceptible cases of TB can be cured more than 90 percent of the time.

Successful management of TB depends on close cooperation between the patient and physicians and other health care workers. Patient education is essential, and many doctors opt for supervised, directly observed therapy (DOT). Treatment usually combines the drugs isoniazid (INH) and rifampin, which are given for at least six months, and pyrazinamide and ethambutol (or streptomycin), which are used only in the first two months of treatment. This treatment is referred to as short-course chemotherapy.

Therapy for MDR-TB

Treatment for MDR-TB often requires the use of a second line of TB drugs, all of which can produce serious side effects. Therapy for 18 months to two years may be necessary, and patients should receive at least three drugs to which the bacteria are susceptible. (Source: excerpt from Tuberculosis, NIAID Fact Sheet: NIAID)

Tuberculosis: NWHIC (Excerpt)

If you have TB disease, you will need to take several different drugs. This is because there are many bacteria to be killed. Taking several drugs will do a better job of killing all of the bacteria and preventing them from becoming resistant to the drugs.

If you have TB of the lungs or throat, you are probably infectious. You need to stay home from work or school so that you don't spread TB bacteria to other people. After taking your medicine for a few weeks, you will feel better and you may no longer be infectious to others. Your doctor or nurse will tell you when you can return to work or school.

Having TB should not stop you from leading a normal life. When you are no longer infectious or feeling sick, you can do the same things you did before you had TB. The medicine that you are taking should not affect your strength, sexual function, or ability to work. If you take your medicine as your doctor or nurse tells you, the medicine will kill all the TB bacteria. This will keep you from becoming sick again. (Source: excerpt from Tuberculosis: NWHIC)

Buy Products Related to Treatments for Tuberculosis

 
Shopping.com



 

By using this site you agree to our Terms of Use. Information provided on this site is for informational purposes only; it is not intended as a substitute for advice from your own medical team. The information on this site is not to be used for diagnosing or treating any health concerns you may have - please contact your physician or health care professional for all your medical needs. Please see our Terms of Use.

Home | Symptoms | Diseases | Diagnosis | Videos | Tools | Forum | About Us | Terms of Use | Privacy Policy | Site Map | Advertise